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ABSTRACT

This thesis is concerned with the film condensation of low
pressure metal vapors on isothermal vertical flat plates or tubes.
The liquid film has been treated as a thin layer in which the
acceleration and pressure forces are negligible and across which
the temperature distribution is linear. The average behavior of
the vapor has been found from the 1inearized one-dimensional wvapor
flow equations. A consistent distribution function has been deter-
mined for the wvapor particles at the Iiéuid—vapor interface.

The result of this analysis is a set of algebraic equations
from which one can predict the condensation rate of low pressure
metal vapors. There is good agreement between the most recent and
reliable experimental data and the present theoretical calculations
if, in the present calculations, the presence of a small amount of

a noncondensible gas is included.
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I. INTRODUCTION

In many engineering applications, one encounters problems which
require a thorough understanding of the transfer of mass, momentum,
and energy betweén phases, One important example of this type of
problem»is the physical process of con&ensation? that is, the change
of phase from vapor to liquid state. This phenomenon can occur
whenever a saturated vapor comes in contact with a surface which
is at a temperature lower than the saturation temperature of the
vapor. If this is the case and condensation occurs, then the latent
heat thereby liberated represents the major portion of the heat
transferred.

Condensation on a cool surface is initially in theAform of a
large number of very small droplets which continue to grow by
condensation and by coalescence with other neighboring droplets
until the droplets start moving along the cool surface under the
action of gravity and/or flowing wapor. New droplets will immedi-
ately continue to form in the trace behind the moving droplets.
These moving droplets then join to form continuous streams and these
streams in turn join with each other to eventually form'a film
over the entire cool surface. In the initial stage of condensation,
we speak of dropwise condensation, while in the final stage, we
speak of film condensation. The change-over from dropwise to film
condensation will take place unless the cool surface is contaminated
and/or a sizable amount of noncondensible gas is present in the

system. The tiime needed for change-over depends on the wetting



properties of the vapor and condensing surface. Condensation

of mercury vapor on a nickel surface may take as much as ten hours
to change over to film condensation. In general, dropwise condensa-
tion can not be maintained for a long period of time, and therefore
most condensing equipment is designed with thé assumption that film
condensation will exist. Thus, film condensation is of more
practical importance.

Under conditions where the forced-convective velocities are
negligible, the condensate formed on the cool surface will flow
downward mainly under the influence of gravity. The flow of the
condensate may be laminar or turbulent. The transition to
turbulence will occur when the condensate layer grows sufficiently
thick. However, the flow in the upstream portion of the condensate
is still laminar. Fluid motions within the bulk of the vapor are
caused by the removal of mass at the liquid-vapor interface, andﬁ
by diffusion due to temperature and concentration differences. 1In
some situations, the interfacial shear force may also become im-
portant.

Nusselt [1] developed a theory of steady-state, condensation
heat transfer on an isothermal vertical surface. In his work,
Nusselt made many restrictive assumptions, of which several have
been removed in the past ten years. Nusselt's assumptions are:

1. There is no temperature drop in the bulk of the vapor; that is,
the temperature on the surface»df the liquid film is the

temperature of the bulk vapor.



2. Subeooling of the condensate may be neglected.

3. The condensate flow is 1éminar.

4. The fluid properties are conmstant.

5. The inertia effects in the liquid film are negligibie.

6. Vapor drag at the liquid-vapor interface may be neglected.
7. The temperature distribution in the film is linear.

With Ehese assumptions, Nusselt derived the well-known formula,

j ,12 Ke /\

where

;%v = gverage heat transfer coefficient,

f] = gravitational acceleration,

Sk = density of the condensate,

Ke = thermal conductivity of the condensate,
/Al = yiscosity of the condensate,

X = latent heat of condensation,

L = yertical length of condensing plate or tube,

7; = surface temperature of liquid film,

3

temperature of the cold wall,

The first improvement in Nusselt's theory was made by Bromley [2].
He derived a correctién to account for the effect of liquid sub-
cooling. The improved analysis predicted a slight increase in heat
transfer at high values of the paraméter CTQ (SGLéi?EL) where

C%k is the specific heat of the condensate. In most applications,



this parameter is very small and has a value between 0 and 0.2.

Seban [3] eitended Nusselt's theory to the case of higher
Reynolds number by assuming a transition from laminar to turbulent
flow at a Reynolds number of 1600 and a universal velocity distribu-
tion in the film. His results verified the qualitative expectation
that, in turbulent flow, heat transfer coefficients were higher for
large Prandtl number fluids (Pr = 0.5 or greater), but showed little
change for low Prandtl number fluids.

The study of the effect of the nonlinear temperature distribu-
tion in the liquid film was first made by Rohsenow [4]. His analy-
sis was similar to Bromley's and he improved Bromley's model by
including the effect of cross flow within the film. He found that

this refinement becomes important only for large values of the para-

meter (fh Gzaj;TZQL)

Further refinement of the Nusselt model, including momentum

e

effects as well as energy convection, was made by Sparrow and
Gregg [5] using a similarity transformation method. Solutions
were obtained for values of the pafameter C%t(I%jtZﬁ) between
.003 and 100. It was found that the inclusion of the momentum
terms had very little effect on the heat transfer for small values
of the parameter(?k ézgiiZEQ . Similar reéults were cobtained
by Mabuchi [6] using an approximate integral method.
Chen [7], Koh, Sparrow, and Hartnett [8], and Koh [9] considered

almost simultaneously the effect of wvapor drag. In this model,

due to the no-slip condition at the interface of the vapor and the

.condensate, the motions of the wvapor and condensate are considered



to be coupled. The solution of such a physical model requires

a simultaneous solution of the flow fields in the vapor and 1iquid
regions. The above investigators found that the effect of vapor
drag on the heat transfer is quite small for large values of
:Prandtl number (Pr = 1 or greater). Fdr fluids with small Prandtl
number (usually liquid metals), vapor drag may cause a substantial
reduction of the heat transfer rate. The reduction increases with
increasing values of the parameter C?Q (Ziiiﬁﬁxa .

All the analyses so far reviewed were based on the assumption
that the surface temperature of the film is equal to the saturation
temperature of the vapor. These theories have adequately described
the condensation process of steam or organic vapors, but the same
thing can not be said for metal wvapors.

Recently the use of liquid metal in heat transfer systems
became popular in the field of nuclear and spacecraft engineering.
The advantage of using liquid metal is its low vapor pressure
compared to that of steam and organic wvapors at the same temperature.
This fact permits the use of light weight design for high tempera~
ture heat transfer systems.

The general observation of the condensation of metal vapors
has been that the measured values of heat transfer rate fall far
below the predictions of Nusselt's classical theory or the predic-
tions of more recent modifications to that theory. Data of Misra
and Bonilla [10] on condensing sodium and mercury vapors up to

atomospheric pressure indicated that the film condensation heat

transfer coefficients of mercury and sodium vapors are roughly 5%



to 15% of the value predicted by Nusselt's theory. Data of

Cohn [11] on condensing mercury and cadmium vapors indicated that
heat transfer coefficients for condensing metal vapors are abou;

17 to 157 of the coefficients deduced from Nusselt's theory.
Similarly, discrepancies between Nusselt's classical theory and
experimental data are shown in the recent data of Sukhatme and
Rohsenow [12] for film condensation of mercury. Sukhatme

measured condensate film thickness by gamma attenuation and found
that the results agreed approximately with Nusselt's theory with an
assumed remperature on the film surface. He alsoc found that the
condensing ﬁeat transfer coefficient increases with increasing wvapor
pressure, while thé addition of a noncondensible gas to the system
might cause a decrease in heat transfer coefficient with increasing
vapor pressure.  Based upon these findings, Sukhatme concluded

that previous data for film condensation oﬁ metal wvapors contain
errors due to the presence of noncondensible gases.

Nusselt's theory and its refinements do not offer‘a satisfactory
explanation of the condensation of metal vapors, but there remains
one more assumption of Nusselt's theory to be examined; namely,
that the surface temperature of the film is equal to the saturation
temperature of the vapor. - If the film surface temperature were
much lower than the vapor temperature, the low heat transfer coef-
ficient could be explained. The kinetic thepry of condensation
predicts implicitly a temperature jump at the liquid-vapor interface.
Hence, the theory has been constantly used in explaining the cqndensa-

tion of metal vapors.



The classical ﬁ\odel of kinetic theory of condensation was
proposed by Hertz [13]. He considered a vapor at pressure ﬁ, and
temperature T,, condensing on a liquid whose surface temperature is

Ts corresponding to a saturation pressure & . If it i8 assumed
that the vapor has a Maxwellian velocity distribution, the molecular
flux by weight can be calculated in both directions. These fluxes

are

-W_v = _____f\_4___ i = .
(A)i P., ZWR-E (" ‘U,S) (1.2)

where ‘%)5 répresents the absolute rate of evaporation and (—g!-)
v

represents the absolute rate of condensation. If these two

fluxes are not equal, condensation or evapo}ation is occurring.

It is possible that not all the molecules striking the liquid
surface actually condense and a condensati;n coefficient 02 is
then introduced to account for this. An evaporation coefficient Gé
may be defined in & similar way as the fraction of the absolute

evaporating flux which actually evaporates. The expression for

the net rate of condensation is then given by

WY = M _ M ]
(et = P‘G/ 27R To %Byzmr Ts @

The value of O; may approach unity when evaporation is taking
place in a high wacuum, but when condensation is taking place, it

is evident that (]E could have values much less than unity due to



the interference of the condensing molecules with the evaporating
molecules. In the absence of specific knowledge about the evapora-~
tion coefficient, certain assumptions have to be made. The assump-
tions which have been used most often in the study of experimental
data of condensation are that either Ge =lor (= O; . As
should be noted, ﬁ; = CZ. only makes sense in equilibrium and
there is no physical reason why this should hold away from equili-
brium.

The first improvement in Hertz's formula was made by Schrage
[14] and later Kucherov and Rikenglaz [15]. They derived a correc-
tion to account for the net motion due to a steady state condensa-
tion. By including the mean velocity in tHe distribution function
for vapor moving toward the liquid surface, a correction [° was
found in calculating the absolute rate of condensation. The expreé-

sion for the net rate of condensation due to Schrage is giwven by

W - M _ M
(%), =0T Ry TR &ﬁv%%—.r— (1.4)

where
F=e® + o (1 + erf ) a.5)
and
(F et 1.6)



In Hertz's or Schrage's model, they apparently assumed that
bulk Vapor conditions prevail up to the vapor-liquid interface, and
predicted a temperature jump in one mean free path from the liquid
surface.

Labuntsov [16] and later Patton and Springer [17] removed this
unrealistic assumption using the double Maxwell distribution func-
tion along with Lees' moment method. They first considered a case
of two surfaces - evaporating and condensing - as boundaries where
thé temperature, velocity, and number density of evaporation are
specified. Using the same technique, Patton and Springer modified

‘Hertz's model and the result was given by

aT ! e ) aPoCe ,, G
(_ﬂ. :_mj EL Tv.( i+ 4/{_5,'_Kn+0’c. ,_—_—z O': '+-0-';_ a.mn
A ﬂ"" z1T v i + ’

72? B 7%‘ z + EME’KH
where ATzTu = Tg and AP = R-F , while K, is the Knudsen
number defined as the ratio of mean free path to a convenient
‘characteristic length.
Schrage's formula was used by Sukhatme, Barry [18],

Minkowyez [19] and many others in analyzing their experimental data
of condensing wapors, while the Patton-Springer formula was used
recently by Sartor [20]. They found, in general, that the theory
. fails to explain the results of experiments. They assumed either

G =1lor G, = Oc and expected to get a constant value of C. .

Unfortunately, for (, = 1, (_ can range from .04 up to .45

[~

. for steam and up to 1 for alkali metal vapors.

4
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The inadequacy of Nusselt's theory and the unsatisfactory ex-—
planation of the temperature drop at the liquid-vapor interface from
the kinetic theory of condensation motivated the present investiga-
tion. This investigation has been undertaken to provide an explana-
tion of the temperature drop near the liquid-vapor interface in the
condensation of low pressure metal vapors. The physical model
studied is that of laminan film condensation of vapor on an iso-
thermal vertical surface.  A solution has been obtained which per-
mits the prediction of condensation of pure wvapors or mixtures of
a vapor and noncondensible gases. It has been found that a large
temperature drop can exist near the interface in a narrow region
whose thickness is proportional to but much larger than the mean
free path and inversely proportional to the mean Mach number of
the condensing wapor.

Details of film condensation of a pure vapor on an isothermal
vertical flat plate have been carried out in Section II. Fairly
good agreement between the theory and Sartor's data for condensa-
tion of one-dimensional flow of rubidium vapor has been obtained.
However, if one uses this theory, there is still rather poor agree-
ment with Sukhatme's data for condensation of mercury vapor on a
finger type condenser. The poor agreement is probably due to the
presence of noncondensible gases and to the isentropic expansion
of the wvapor itself. This vapor expansion was not present in
Sartor's one-dimensional flow. In Section III, we have extended
the theory for pure vapor to include the presence of noncondensibie

gases., As expected, the presence of noncondensible gases plays a
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decisive role in retarding the condensation rate of low pressure
metal vapors. In Section IV, we have included the additional
temperature drop due to the expansion of the vapor. In some
situations, the temperature drop due to the expansion of the vapor
may be more significant than the interfacial temperature drop. The

final result is good agreement between theory and experiments.



IT. FILM CONDENSATION OF A PURE VAPOR
ON AN ISOTHERMAL VERTICAL FLAT PLATE
2.1 Discussion of the Analytical Model

The vapor flow field for the present problem of film condensa-
tion on an isothermal vertical flat plate can be divided into three
regions as shown in Fig. 1. In region I, the y-component of the
‘mean velocity of.the vapor at infinity is much greater than the
maximum value of the x-component of wvelocity: namely, the downward
velocity at the liquid-vapor interface. 1In this case the dynamics
of the vapor flow normal to the plate is importantvand can not be
neglected. In region II, the maximum values of the two components
of velocity are about the same order of magnitude. In region III,
the liquid film plays the important part and the dfnamics of the
vapor can be completely neglected.

Under conditions of (a) large value of latent heat, (b) long
length of condensing plate, and (c¢) high wvapor density, region III
will dominate and the temperature change in the vapor may be neg-
lected. These conditions are usually met in condensing steam and
organic vapor systems and explain why Nusselt's theory works. On
the other hand, the condenshtion of low pressure metal vapor
generally occurs under the following conditions: (a) a smaller
value of latent heat, (b) short length of condensing plate, and (c)
low vapor density. Under these conditions, vapor flow is important.
The corresponding‘;emperature drop in(the vapor can not be neglected.

If a temperature at the liquid-vapor interface is assumed,
the liquid film and the vapor can be treated independently. The

12
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former is treated as a liquid boundary layer, while the latter is
treated as a one-dimensional vapor flow. However, the two problems
are really coupled since the temperature is assumed to be continuous
at the interface. A kinetic theory argument is necessary to deter-

mine the condensation rate and hence the interface temperature.
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Figure 1. Schematic of film condensation
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2.2 Liquid Film

The specific problem that will be analyzed includes the follow-
ing assumptions:y (a) the surface temperature of_the liquid film is
constant, (b) the condensate flow is laminar, (c) the fluid properties
are constant, (d) momentum changes through the condensate are negli-
gible and the viscous force balances the body force, (e) the wvapor
drag at the interface is neglected, and (f) the temperature distri-
bution in the liquid film is linear, which becomes exact for low
Prandtl number. A schematic representation of the physical model
and coordinate system has been shown in Fig. 1.

With these approximations, the equations expressing conserva-

tion of mass, momentum, and enérgy in the liquid film arve:

Continuity:
o2 Uy ovp _
vl 5y o (2.2.1)
Momentum:
d5, + /& aj =0 (2.2.2)
Energy:
K ﬂi) =0 (2.2.3)

)’ *]

The boundary conditions appropriate to the liquid film are:



i5
Wall conditions ( y: o)
~Ug=-Uy= 0 Te = Tow (2.2.4)
Interface conditions (Y = &p)

Uy _ -

'3_-91 — o 3> T—‘¢ = T; (20205)
All symbols are defined in the list of symbols and further elabora-
tion is given only when necessary.

Equations (2.2.2) and (2.2.3) can be solved along with the

boundary conditions (2.2.4) and (2.2.5). The solutions are

2
Up = Z,Ux 258 g (z - 1 @2.2.6)

To = Tuw +(Ts- Tw) %I_ (2.2.7)
2
‘U:c has beew omitted since it is not important in the problem.
The thickness distribution (&) of liquid film may be found
explicitly if one assumes that all the heat flow through the liquid
is generated by condensation of vapor at the outer edge of the

liquid film. The heat flowdQ throdgh the liquid with the height

dX and unit dimension 4n the horizontal direction along the wall is

dQ = —g—‘-‘i(?; - T.)dx (2.2.8)
2
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The mass of liquid flowing through this cross section at X is

Se
G = & Uy d)/ (252.9)
[]

Integration gives

. _ 9% (3
G = é—pi- & (2.2.10)

At a distance dX in the dovmward direction, the mass flow is

greater by the amount

dG = i{? @zji‘ea’.x (2.2.11)

k3

This amount must be generated by condensation of vapor. With the
equation do Q=A dG , in which X fis the latent heat of vaporiza-

tion, there is obtained from equation (2.2.8)

dG = ;\JQ; (Ts- Tw) dx (2.2.12)

By equating (2.2.11) and (2.2.12), the formula

3
dés _ HekKe - R

is obtained. Iﬁtegration of equation (2.2.13) with the condition

of vanishing thickness at the leading edge gives



17

=L
Py
§, = [ 2 Ve ke (7 - 7o) .X]

[ ~ 35, (2.2.14)

For a given length of condensing plate, an effective film thickness

( g:e )e and a mean mass flux per unit area (7 are defined

L
G = -Z_’- G dx (2.2.15)
[/]
G= K (Te-Tw) (2.2.16)
(&)
where
=+
-3 | 4VeKel (Ts- Tw)] (2.2.17)
(g,e)e 4 [ /\j fé

The mean heat transfer rate of condensation per unit area is cal-

culated by the formula

w——

Q = A é (2.2.18)
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2.3 Vapor Flow

The vapor will be treated approximately as a one-dimensional
flow. The general analysis may be simplified by use of the following
assumptions: (a) the properties of the vapor are constant, (b) the
total temperature drop in the vapor is much smaller than the absolute
bulk temperature, although it may be much greater than the tempera-
ture drop across the liquid film, (¢) the Mach number of mean vapor
flow is very small, and (d) the vapor obeys the perfect gas law. The
simplified model and coordinate system is sketched in Fig. 2.

The governing equations of the wvapor flow are:

Continuity:
j(f’V) = (2.3.1)
Momentum:
v o ! ,

v -‘i(a-l—),— = - %—)l,’- + $pu “é;{ (2.3.2)

Energy:
4T, )

j’UC =K dy‘ 3 /.4( ) (2.3.3)

State:



20

The temperature and pressure at infinity and the temperature on
the wall are usually given as boundary conditions, while the velocity
at infinity is found from the mean mass flux divided by the vapor
~density at infinity. The appropriate boundary conditions for the
vapor are:

Bulk vapor conditions (Y —> oo)

T=Ta P= P , V = VU ::=-_G_- (2.3.5)

Interface condition ( Y= 0)

T = Ts (2.3.6)

Integration of equations (2,.3.1) and (2.3.2) gives

FV = £ Voo ==G (2.3.7)

P + S,_U_z = ';i/u d___}f + C, (2.3.8)
where

el [ SO0 2.3.9

By multiplying the momentum equation by \J' , adding the result to

the energy equation, and integrating, one obtains
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2 )

Sv(CT+ ) = KleyZ # -g—/l?f%——}j-sz (2.3.10)
where

C, .—.-G"(cf Tow + 122 (2.3.11)

: C
Denoting ﬁz—ﬁ by Prandtl number fJ. and replacing Cp by -——————,/‘z 7 R
in which 7/ is the ratio of specific heats, equations (2.3.8) and

(2.3.10) may be rearranged in the following forms

2 A v RT . &
T3 3" d),—' v+ Y3 + g (2.3.12)

and

_4 M4 dT 13 RT _VS G, & ?
55 ( )= % FU- £ (2.3.13)

7y (37

|

These are a set of nonlinear differential equations. For small de-

viations about the singular point at infinity, the system can be

linearigzed.

Let
T = Too + T (2.3.14)
U = U + U’ (2.3.15)

By substituting these relations into equations (2.3.12) and (2.3.13)

and dropping second order terms, one obtains the linearized system,
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-+ R {(2.3.16)

v, e T
v-* v;o

-4 L A7 (A .23_ /?) _—::-15_-/—-7’— U,,Uig.@u-' (2.3.17)
G

7T = A e (2.3,18)
(2.3.19)

which, after rearrangements of equations (2.3.16) and (2.3.17),

lead to the system

+ _4p A=/ _ .

(1x - F B)RA - 5B 3 Mz Ve B =0 (2.3.20)
I —

RA -+ [(l— o)~ 3 M:]U&B =0 (2.3.21)

where A, B and o are arbitrary constants and

2 S Vo (2.3.22)
Me = T

To have a nontrivial solution, the determinant of coefficients of

A and B must vanish,
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(47 -4)(1-a) Me - 2B +a =0 (2.3.23)

which may be written

‘/Mf..d%—(*//w:‘f- gﬁM;—Do( +3‘1’B(Mi-1):o (2.3.24)

The roots of this equation are

2 4 a = '6 2
oC:-—‘-(I-l-if!“"’L”)i ("/M..""ijrMu"l): =RA-DM (2.3.25)
21 Ma

The root with plus sign is necessary in the present problem. The
root with minus sign is rejected, since it is negative for Mach
number less than unity.

The solution for the condensation of metal vapor when the
Prandtl number is two-~thirds is presented here. The appropriate

root is obtained from equation (2.3.25) and is

2
40§ 78) + e ) Fea o
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In the limiting case (M, —» O ), there is obtained from equation

(2.3.26)

I

o= 2 (2.3.27)
9
and from equation (2.3.20) or (2.3.21)

=
Voo

A ~ ‘
— = (2.3.28)
B 2.
By substituting these results into equations (2.3.18) and (2.3.19)
and appl&ing the appropriate boundary conditions, one obtains

from equations (2.3.14) and (2.3.15) the results that

oo = Ts A

TE Tee — (MT )T“ e 2 (2.3.29)
.24

U= Vo - (E;_%:IS_) U, eT A7 (2.3.30) |

o9
The density may be obtained from equation (2.3.7) and is

2 G

§= S+ {__E:__’:___Is.)f” e F7 (2.3.31)

The pressure may be obtained directly from the equation of state

and is

2 . 2
-2 8
PZ R — (—7%‘_——73) ﬁ,,[ 3 /“’] (2.3.32)
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In this limit (Mpy—> © ), the linearized solution indicates

that the temperature and velocity wvary exponentially in a very thin
layer near the interface, while the pressure is approximately
constant (if 25%&;;<<l). For a saturated bulk vapor, the vapor

at the interface is therefore in a supersaturated condition.

2.4 Distribution Function

The previous analysis does not permit the calculation of the
temperature 'T; at the interface. However, this temperature can
be determined if one constructs a consistent distribution function
which correctly describes the average or macroscopic behaviér of
the vapor at the interface.

‘A distribution function is assumed for those particles on the
vapor side at the plane which is parallel to and located very
close to the interface. The assumed distribution function con-
sists of three parts and is written “

j(._. ﬁ + :fz + 53 (2.4.1)

}, represents particles leaving the liquid with zero drift velo-
city. 5% represents particles entering the liquid with a drift
velocity izd . j; represents partigles not entering the liquid
but moving over the condensing surface. Since the condensing sur-
face can serve as an energy absorber, the energy normal to the surface
may be absorbed and transferred away through the liquid. Hence,
for particles of the third kind, the thermal energy normal to the

condensing surface may be much smaller than the mean thermal energy.
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Denoting by T, the temperature of particles of the third kind

normal to the condensing surface, this assumption can be written as

or

RN
A
A

|
l
O

The forms of £ §, and f; are assumed

3/a 2 le 2
§= e (e onp (cm LHEE)

34 2 - & 2
- m__\* o U+(v-vd)+w
£27s (%) exF[ ™R, ]

(2.4.2)

(2.4.3)

(2.4.4)

, 2 N Y% 2
fen(ei)er(m ) i) or(mmam) o

If the mean drift velocity of particles of the second kind is

much smaller than the mean thermal speed, equation (2.4.4) may be

simplified to

£=(1+ 22 Y) f,
where

2 _ 2RT:
as = S5

(2.4.6)

(2f4°7)

The macroscopic properties of the vapor at the interface are cal-

_ culated from the following:-definitions:
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Temperature:

oo
Lm ' fdudvd
2 AT = [ zmcddodvdw (2.4.8)
7?]7’- dudvdw

Density:

5

fﬁmf du dvdw (2.4.9)
-00

Velocity:

fﬂm vfdudvdw

L = (2.4.10)
ff‘{ m7[ dudyvdw
which may be written as
-G = ff/m vfdudvdw (2.4.11)
-9

The interface conditions are chosen to be those of the previous

analysis in section (2-3); namely /; = [, , P ¥ P, , and

R ‘

Direct integration of equations (2.4.8), (2.4.9) and (2.4.11)

yields
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(2:4.12)

Po :-ﬂ,("’ ;\fd ) + £ (2.4.13)
=-f —gf'— (2.4.14)

where f; is the saturation density at temperature '7; , while
S; is the density of particles of the third kind.

From equation (2.4.12), one obtains

_ e T ! ,
fa_—ﬁ?fa_s(,_l) (2.4.15)

Ts
By substituting j; from equation (2.4.15) into equation (2.4.13)

and making use of equation (2.4.14), one obtains the important

formula

)

&_&;.M(ZFRMT) (z-r——ﬂ:—r_-:a (2.4.16)
=

s
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which, when rewritten for the case of ;%? —> 0
s

L
— 2
Po- P = _%.G (2 R Ts) (2.4.17)

where P; is a given function of 7J; , while éf is defined by
equation (2.2.16). Then the temperature 7; can be determined by
eduation (2.4.17).

‘With the present approximation for the distribution function,
an interesting coefficient (), may be defined which resembles the
usual condensation coefficient; namely, 01, is the fraction of the
total number deusity of particles of the second and third kind that

will actually condense, i.e.,

ﬁfo f, dudvdw

— -0 «0o

0-;' — o
/]ofa,gdudvd;«/ —f//[,éd‘udvdw

PO =3

(2.4.18)

By integrating and making use of previous results, one obtains from

equation (2.4.18)

f%e - f§

S ————t

s
Oy = I- Fo— (2.4.19

]+
Foe

In the present problem, 6; has values between 0.5 and 1.0 and
is shown in Fig. 3. When the condensation rate is zero, 0; is unity

and starts decreasing as the condensation rate increases.
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2.5 Results of Calculations

The results of calculations based on the present theory are
presented as curves of heat transfer rate per unit area (éz)
versus ghe total temperature drop ( Tee — Jw ) for different values
of vapor pressure [, .

For a fixed vapor pressure IZ. , one first calculates the mass
flux é; from equation (2.4.17) for any value of Tg , and then,
from equations (2.2.16) and (2.2.17), calculates the temperature
drop across the liquid film. The heat flux per unit area é§ can
be calculated from equation (2.2.18), while the total temperature
drop is the sum of the temperature drop in the wapor and in the
liquid film. 1In practical cases, 7; is given and (5 and T
can be obtained by trial and error.

Some analyfical results for condensation of one dimensional
Rubidium vapor are shown in Fig. 4. The physical properties of
Rubidium are taken from reference [21] as follows:

Ke = 23 BTU/hr-ft-°F

)
Ga
4
A
M = 85.5 lbm/mole

92 1bm/ft>

.0913 BTU/1lbm~°F

60 1bm/ft-hr

!

381 BTU/1bm

The saturation pressure as a function of temperature (shown in
Figure 5)

The thickness of the liquid layer is chosen to be 0.12 inches‘which

has been used in Sartor's experiment.
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In Fig. 4, curves 1 and 2 are for the highest and lowest wvapor
pressures in Sartor's data. Curves 3 and 4 are for much lower pres-
sures to show the dependence of heat transfer rate on the vapor
pressure. As can be seen, lower vapor pressures give lower heat
transfer rates.

It can be shown that the interfacial region across which the
temperature drop inside the vapor occurs s very thin. The Mach
number in Sarﬁor's experiments with Rubidium varies from .002 to .005.
The thickness of the interfaéial region is about 500 to 1000 mean
free paths of rubidium vapor, or of the order of 5 x 10_5 inches.,
This confirms Sartor's conclusion that‘there is a rapid temperature
‘change near the liquid-vapor interface,

As,.a comparison with Nusselt's theory, the ratio of average
heat transfer coefficient of the present theory to Nusselt's theory
is pi;tted againt the parameter ka(;Eéile!) in Fig. 6. The
general trend is- that lower vapor pressure gives greater deviation
from Nusselt's theory.

The agreement between Sartor’'s data and the theoretical predic-
tion is good with the discrepancy between the two being less than
ten percent, but more data in -2 much lower pressure range is needed
to justify the theory. Some important experiments of condensation
of metal vapors at lower pressures have been conducted on a finger
type condenser. Available data shows heat flux is considerably smaller
than the predictions from the present theory. The discrepancy may be
due to the presence of noncondensible‘gases and to the isentropic

expansion flow of the vapor itself. A study of the effect of the
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presence of noncondensible gases is presented in Section III., In
Section IV, the condensgtion of a metal vapor on a finger type
condenser is discussed. The effects of noncondensible'gases and

of vapor expansion are included.
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III. CONSIDERATION OF THE PRESENCE
OF NONCONDENSIBLE GASES
The following analysis is restricted to a system with only two
components, namely a mixture of wvapor and air. 1In practice, the
amount of air is kept as low as possible and therefore the concen-
tration of air may be assumed to be very small. The same physical
model shown in Fig. 2 is used here. The governing equations for a

mixture are as follows:

Continuity:
A -
_d_y.(gv)_ o (3.1)
Momentum:
dv __dP L 4 dyydv
SV 47 =T + 5 55(H A]'J G-

Energy:

dp . Ay d dvY
Svep i-;f = Ugjﬁ 1 37“ ;;jz +§'/“(;e§{) -3

State:

P=8§RuT (3.4)
Diffusion:

dw
Svw =§ D,l-—j- (3.5)

The balance between mass convection and mass diffusion is represented
by equation (3.5), in which W is the concentration or mass fraction

of air and Dnz is the diffusion coefficient of a mixture.
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Subscripts 1 and 2 denote respectively the pure vapor and air.
The properties of a mixture are calculated from the kinetic theory
for a rigid spherical molecule [22, 23]. The results are expanded
in a power series in W . Since W is very small, only the

first order term is kept in the expansion.

Vigcosity:
FE/}I_._M_L(IL[g —ﬁi)w.,,...... (3.6)
M, 1 &1z gzl
Conductivity:

~ M, K e .
K" Ka mn(Kléazw 2:‘) w (3.7
Gas constant:
Ru= Ru, = Ru, (1= -f—;"’i)w (3.8)
Specific heat:
= - 3.9
Co=Cp +(¢p, Cp Y W (3.9)

Diffusion coefficient:

_L
/— pn- [ ,i G ( MA.L?‘ RT) (3.10)
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where ( is the diameter of a molecule and

2 | M )é-
G; + G} + N . .
. ==t L) a1 L=1,25 j=1,2 (3.11)
In these equations, all the propetties will be evaluated at the
vapor temperature [, .

Using the method of regular perturbation, one sets

Pz P+ w Pt wd PP (3.12)
P2 57 4w W 61
T=T+we T+ W T - (3.14)
U= U(o) + W U(l)+ Wi,z ,U.Lz)_*_. . (3.15)
W= w; X“) + W;,z X‘2)+ c e e e e (3.16)

where W; 1s the local concentration of air at the interface and
X is the normalized concentration function.
By substituting equa‘tions (3.6 - 3.16) into equations (3.1 -
3.5), and retaining terms of‘ the lowest order in W/ , one obtains

the following system of equations:
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5_7 (f(o).u,w) =0 (3.17)
o)., o of YU AP | 4, LU
y‘ ] == _;}_ + 3/“‘ djz (3.18)

() () ) “D
o )
P = S’“’) Ru, T¢ (3.20)
fCO)U(O) X“): §(°) D A X (3.21)

The boundary conditions for equations (3.17-- 3.21) are those stated
by equations (2.3.5) and (2.3.6). Since we come up with a system
identical to that in section (2-3), the linearized solution for the

limiting case (Mw—~> 0 ) is simply written

, 25y
T To- (=) T, e # (3.22)
o
26
U= U, - T":,—ﬁ)vwea/‘"y (3.23)
.24
= 50 (mpB A

while the pressure of a mixture is again approximately constant.
By neglecting the small variation of the density, one can

revrite equation (3.21) as
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IR

= w
G X" -£.D, %—{— (3.25)

for which the boundary condition is

«)

X =1 at y=o (3.26)

Integration of equation (3.25) gives

n _ G

X = exp(—ﬁonz y) (3.27)

and

3%

(3.28)

Since [22 is about the same order of magnitude as )% , the
thickness of the diffusion layer is found to be comparable to that
of a visco-conduction layer.

To calculate Ww,; , the total amount of air per unit area must

be specified. Denoting it by Aﬂ , there is obtained

GY
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Integration gives
2 D
Ay = S w. =° (3.30)
from which one obtains

W, = -53§-Ei- (3.31)
D,

L)

As can be seen from equation (3.31), for a fixed amount of air 445
and rate of condensation é; , the lower the vapor pressure is, the
higher the concentration of air is at the interface. The higher
concentration Qf air at the interface will seriously retard the rate
of mass condensation. This fact explains the significance of the
presence of noncondensible gases in the system of low pressure metal
vapor.

The partial pressure of vapor EL} at the interface is calcu~
lated from

. = Joo (3.32)

By letting

P s (3.33)
W T - (1= My )
| - (i Mz)w,,

one obtains the important formula for a mixture

S - +
= G (2T Ry, Ts) (3.34)

N

/ﬁah f2° - f;
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In contrast to equation (2.4.17) which was obtained for the case of
a pure vapor. A comparison of these results for a mixture of mercury
and air with experimental data of Sukhatme on a\finger type cundenser
is shown in Figure 10, The finger type condenser will be analyzed

and the above comparison will be discussed in the next section.



IV. FILM CONDENSATION OUTSIDE AN
ISOTHERMAL VERTICAL TUBE

4.1 Theory

The condensation of low pressure metal vapor on a finger type
condenser is illustrated in Fig. 7. There are three regions in
which the temperature is gradually brought down to that on the wall.
These regions are: (a) the outer region in which the vapor expands
isentropically, (b) the interfacial region in which the vapor is
slowed down and cooled by the presence of noncondensible gases and
by viscosity and heat resistaﬁce, and (c¢) the liquid film region
across which the temperature distribution is approximately linear.
Since the thickness of the liquid film and interfacial region are
very thin compared to the radius of the condensing tube, the flow
problem in these two regions can be approximated as condensation on
a vertical flat plate. The general analysis and results in Sections
IT and I1I can be applied here. On the other hand, the temperature
drop in the outer region can be found from the gpnsideration of an
inviscid pure vapor. The reason for considering the vapor pure is
that aimost all the noncondensible gas is in the finterfacial region.

The governing equations for the vapor in the outer region are

Continuity:

d
Z;’(S"UT) =0 (4.1.1)

b4
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a: outer region
b: dinterfacial region
¢: liquid film region

Figure 7. Schematic of finger type condenser
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Momentum:

v __dp |
SV T =° g7 (4.1.2)
Energy:
2
Z'd? (% + ch) =0 (4.1.3)
State:

P=P (_jrli)"" (4.1.4)

In these equations, j’ R f’ and T are respectively the
density, pressure and temperature of the vapor, while }/ is the
velocity in the radial direction. Subscript O denotes stagnation
conditions. The appropriate boundary conditions are:

Stagnation conditions ( Y —> oo )
T=T, > P=Pp (4.1.5)
Inner condition (Y = ¥ )

T —_ T” (4.106)

where 1:9 is the temperature at the intersection between the
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outer and interfacial regions.

The solution for the mass flux per unit area of condensing tube,
which is again denoted by é; , 1s easily obtained by solving the
equations (4.1.1-4.1.6)

G=¢ [ZCF (T,- Ta,)] (—_’7—%’);’%T (4.1.7)

For completeness, the results in the liquid film and interfacial

regions are rewritten from equations (2.2.16), (2.2.17) and (3.34)

v 3
=_ 4 (3K & Vi
G - 3 4//‘1 )\BIL/ (Ts Tw) (4.1.8)
and
z = +
Pu Fam i = £G(2TRWT:) (5.1.9)

where /BW‘. is defined by equation (3.33) and

x
P, = R)(%ﬁ)”" (4.1.10)

Solving equations (4.1.7-4.1.9) simultaneously, G , [, and TTg

can be determined.
Because of algebraic complications, the theoretical calculation

starts with assuming T, . G is then calculated from equation

(4.1.8). The temperature [ is obtained from equation (4.1.9).
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4.2 Results and Comparisons

Some analytical results of condensation of mercury vapor are
shown in Fig. 8, in which the heat flux versus total temperature
is plotted for wvarious values of the stagnation pressure.

The length of the condensing tube is chosen to be 6 inches,
the length used in Sukhatme's experiments. The properties of

Mercury are taken from references [24, 25] and are as follows:

_ BTU
Crl = 033 1bm°F
o =830 lb—%‘»
ft
2
_ 5f¢
\% = ,.1x%/0 sec
Kp = __BTU _
£ 6.64 hr ft°F
B BTU
A =127 Ton
M =01 ibm
mole

The saturation pressure as a function of temperature (shown in
Figure 9)

The analytical results have been compared with Sukhatme's data
for condensation of mercury vapor. In the absence of a noncon-—
densible gas, the theoretical predictions, which are noted by solid
lines 1-5 in Fig. 8 are higher than Sukhatﬁe's data by approximately
a factor of 2. On the other hand, Nusselt's theory predicts values
8 to 50 times the values obtained from Sukhatme's data.

In Fig. 8, curves 1, 2, and 3 represent those pressures which
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Figure 8. Cdmparison of experiﬁental'data with
the present theory neglecting the
presence of air.
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can be found in Sukhatme's data. Curves 4 and 5 are some higher
pressures. It clearly indicates that the present theory approaches
Nusselt's theory as the pressure becomes higher.

To show the relative magnitude of the temperature drop in vari-
ous regions, the temperature drops in these regions are listed in
Table I for different wvalues of stagnation pressure. A, B, C and
D are the corresponding points shown on lines 1, 3 and 5 in Fig. 8.
As can be seen, at lower pressures, the largest temperature drop
occurs in the interfacial region. In some situations, the outer
region may become equally or even more important than the inter-
facial region. As pressure becomes higher, the temperature drop
in the liquid film becomes the most important.

Better agreement can be obtained by assuming a small amount of
air is present in the system. To get agreement with Sukhatme's
data, it is necessary to assume there is 4.9 x 10"9 1bm of air
present in his chamber, the dimensions of which are 6-in diameter
and 11-in length. The corresponding vacuum pressure of air is
4.94 x 107° bars. The results obtained by including this amount

of air are shown in Fig. 10.
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TABLE I, Téméerature‘drop in outef, interfacial aﬁ&kliquid film

regions
Temperature Drop °F
|Stagnation Outer Interfacial Liquid film
pressure (Po) Point region region region
A 2 6 A
.05 psia B 8 12 1.05
(l1ine 1)
: c 18 18 1.8
D 56 40.3 3.7
1
A 1.5 7.5 2.7
.25 psia B 4 11 5
(l1ine 3) )
C 16 21 16
D 36 37 35
A <5 5 8
1.00 psia B i.5 8.5 17.5
(line 5)
c 6 15.5 44
i D 12 21.5 72
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Figure 9. Saturation curve of Mercury (Reference 25)



BTU
hr.ft2

-4

Q x 10

200

100

50

10

53

\Afor Precsure /
1: .05 psia) p,esent
2: .15 psia} Theory
3: .25 psia .
i N
<
“S%
s>
O
’////////, //”’,—ﬂ 3
.115
106%%
12 °
>/ 5
.094 .096 1
0]
G
.053
' .067
/
]
.027
2] : Sukhatme's data for
Mercury (Numbers
are in unit of
psia)
5 10 50 100 200
- T °F
o] w
Figure 10. Comparison of experimental data with

the present theory including the

presence of air



V. DISCUSSION AND CONCLUSIONS

A set of algebraic equations has been found for the predictipn
of heat tyansfer rate by condensation. Good agreément has been
found between the available data and the theoretical predictions
when the presence of a small amount of aif was considered. .

The theory is limited to small valﬁeé of Zééizé and Mach
number of the mean vapor flow, but it can be extended to larger
values of these paraméters by working out higher order solutions.
However, a good heat transfer system transfers heat with temperature
drops as small as possible. The corresponding Mach number is
accordinély very small. Typically, the values of -Lééi?é are 0.05
or less and the values of Mach number are 0.2 or less. The error
involved in using the linearized analysis may be estimated to be
4% or less, and therefore the linearized solution is valid in most
applications.

The approximation of a constant temperature on the surface of
the liquid film was validated by Sukhatme's experiment. He
measured the thickness distribution of the liquid film and found that
it could be described by Nusselt's analysis with an assumed film
surface temperature.
| Only the solution for small concentration of noncondensible gases
was given in this investigation. It was foundvthat the presence
of noncondensible gases seriously retards the heat transfer rate
of condensation. In experiments, a great deal of care was takeny

to keep the amount of noncondensible gases small. For this reason,

54
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the solution for small concentration is sufficient. In the calcula-

tions, the concentration of air at the liquid-vapor interface is 0.1

or less, which is small.

The effect of free convection has been considered by retaining
the body force term in the momentum equation. It was found that free
convection will decrease the heat transfer rate slightly, but the
c&rrection is very small, aboug 0.1%Z or less. For a small temperature
drop, the free conveétion is apparently not important, while for a
large temperature drop, the motion due to free convection is still
far less important than the induced mean vapor flow.

There are other factors not being considered in the present
analysis, for instance the impurity of the wvapor, the contamination
of the liquid surface, surface tension, and possible nucleation
of the vapor near the interface. Intuitively all these factors
probably decrease condensation heat transfer, We conclude ‘that the
present theory can be used in predicting an upper limit of heat
transfer rate due to condensation of. low pressure metal vapors.

Some conclusions from the results of this iﬁvestigation are:

(a) During film condensation of low pressure metal vapor, a
significant thermal resistance éoes exist very near the liquid-
vapor:interface.

(b) The resistance iﬁcreases with decreasing vapor pressure. TFor
a high pfessure systeonr non-metal fluids, this resistance
becomes negligible and Nusselt's theory is a good approximation.

(¢) For a low pressure system, condensation outside a tube decreases

seriously due to the expansion of the vapor itself.



(d)

(e)
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The thermal resistance due to thé‘presence of a fixed amount

of air increases with decreasing vapor pressure and with
increasing mu}eéular weight of‘# pure vapor. More clearly, the
presence of noncondensible gagéé is léss important in steam

or in organic wvapors than in heavier metal vapors.,

The heat tr;nsfer coefficient dec;eaées with decreasing vapor
pressure, If the weight of a ﬁea; fra;sfer system is not an
important factor, a low pressure metal vapor is not an
efficient working fluid, However, for light-weight systems

at very high temperatures; metal vapors become the only

possible working fluids.
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